The all Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the all Hub cannot guarantee the accuracy of translated content. The all and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The ALL Hub is an independent medical education platform, sponsored by Jazz Pharmaceuticals, Amgen, and Pfizer and supported through an educational grant from the Hippocrate Conference Institute, an association of the Servier Group. The funders are allowed no direct influence on our content. The levels of sponsorship listed are reflective of the amount of funding given. View funders.
Now you can support HCPs in making informed decisions for their patients
Your contribution helps us continuously deliver expertly curated content to HCPs worldwide. You will also have the opportunity to make a content suggestion for consideration and receive updates on the impact contributions are making to our content.
Find out moreCreate an account and access these new features:
Bookmark content to read later
Select your specific areas of interest
View all content recommended for you
Treatment with chimeric antigen receptor (CAR) T cells is an effective treatment for B-cell acute lymphoblastic leukemia (B-ALL). However, many patients relapse due to short-lived survival and function of the CAR T cells.
The master transcription factor TCF-1 is necessary for memory subset formation leading to improved CAR-T–mediated tumor clearance, sustained remissions, and protection against a secondary tumor. TCF-1 is also responsible for the development and maintenance of precursor exhausted T cells (TPEX) and central memory T cells. However, in a tumor microenvironment, it remains poorly understood how the fate of CAR T cells is decided. TCF-1 regulation in CAR T-cell fate determination may identify the targets that support the development of CAR T cells with enhanced persistence and activity. Regnase-1 suppresses TCF-1, consequently limiting the responses of CAR T cells against tumors.
In a study recently published in Blood, Zheng et al. investigated the complex interactions of Regnase-1, TCF-1, and TPEX in the mediation of CAR T-cell persistence and recall responses.1 The key findings are summarized below.
The study used multiple analyses on several in vivo and in vitro experiments to understand the role of Regnase-1, TPEX, and TCF-1 in CAR T-cell responses.
Regnase-1 deficiency enhances CAR T-cell persistence, supporting anti-tumor responses:
Regnase-1 deficiency promotes the formation of memory-like CAR T cells with recall capacity:
Regnase-1 KO CAR T-cell reprogramming is tumor-antigen dependent:
Targeting Regnase-1 enhances the formation of TCF-1+ CAR T cells:
Regnase-1 suppresses memory-associated epigenetic programs:
Improved persistence and TPEX formation in KO CAR T cells is TCF-1–dependent:
Regnase-1 deletion supports human CAR T-cell expansion and function:
The findings from this study confirm the vital function of TPEX, Regnase-1, and TCF-1 in facilitating CAR T-cell expansion and persistence. They also identify Regnase-1 as a modulator of human CAR T-cell longevity and potency.
Along with other TCF-1 negative regulators, Regnase-1 may potentially be targeted for improved effectiveness of CAR-T immunotherapies in future clinical practices.
References
Please indicate your level of agreement with the following statements:
The content was clear and easy to understand
The content addressed the learning objectives
The content was relevant to my practice
I will change my clinical practice as a result of this content